Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38609335

RESUMO

Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z starting from z = 1 and color coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) data set, CHARDA aids peptide mass spectra interpretation by facilitating charge-state deconvolution of large ionic species in crowded regions, estimating z even in the absence of an isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust, and consistent with conventional FTMS and FTMS/MS data acquisition procedures. An effective charge-state resolution Rz ≥ 6 is obtained with the potential for further improvements.

2.
ACS Pharmacol Transl Sci ; 7(3): 787-796, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481686

RESUMO

Rapamycin is a natural antifungal, immunosuppressive, and antiproliferative compound that allosterically inhibits mTOR complex 1. The ubiquitin-proteasome system (UPS) responsible for protein turnover is usually not listed among the pathways affected by mTOR signaling. However, some previous studies have indicated the interplay between the UPS and mTOR. It has also been reported that rapamycin and its analogs can allosterically inhibit the proteasome itself. In this work, we studied the molecular effect of rapamycin and its analogs (rapalogs), everolimus and temsirolimus, on the A549 cell line by expression proteomics. The analysis of differentially expressed proteins showed that the cellular response to everolimus treatment is strikingly different from that to rapamycin and temsirolimus. In the cluster analysis, the effect of everolimus was similar to that of bortezomib, a well-established proteasome inhibitor. UPS-related pathways were enriched in the cluster of proteins specifically upregulated upon everolimus and bortezomib treatments, suggesting that both compounds have similar proteasome inhibition effects. In particular, the total amount of ubiquitin was significantly elevated in the samples treated with everolimus and bortezomib, and analysis of the polyubiquitination patterns revealed elevated intensities of the ubiquitin peptide with a GG modification at the K48 residue, consistent with a bottleneck in proteasomal protein degradation. Moreover, the everolimus treatment resulted in both ubiquitin phosphorylation and generation of a significant amount of semitryptic peptides, illustrating the increase in the protease activity. These observations suggest that everolimus affects the UPS in a unique way, and its mechanism of action is different from that of its close chemical analogs, rapamycin and temsirolimus.

3.
J Pharm Anal ; 14(1): 100-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352946

RESUMO

Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.

4.
Angew Chem Int Ed Engl ; 63(3): e202316488, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009610

RESUMO

Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with most proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in depleted media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase and Pfu DNA polymerase showed up to a 250 % increase in activity compared to the native counterparts, with an additional ∼50 % increase at 10 °C. Diminished conformational and vibrational entropy is hypothesized to be the cause of the accelerated kinetics. Ultralight enzymes may find an application where extreme reaction rates are required.


Assuntos
Escherichia coli , Hidrogênio , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Bactérias , Tetra-Hidrofolato Desidrogenase/genética , Cinética
6.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894596

RESUMO

Peptides released on frogs' skin in a stress situation represent their only weapon against micro-organisms and predators. Every species and even population of frog possesses its own peptidome being appropriate for their habitat. Skin peptides are considered potential pharmaceuticals, while the whole peptidome may be treated as a taxonomic characteristic of each particular population. Continuing the studies on frog peptides, here we report the peptidome composition of the Central Slovenian agile frog Rana dalmatina population. The detection and top-down de novo sequencing of the corresponding peptides was conducted exclusively by tandem mass spectrometry without using any chemical derivatization procedures. Collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), electron transfer dissociation (ETD) and combined MS3 method EThcD with stepwise increase of HCD energy were used for that purpose. MS/MS revealed the whole sequence of the detected peptides including differentiation between isomeric Leu/Ile, and the sequence portion hidden in the disulfide cycle. The array of the discovered peptide families (brevinins 1 and 2, melittin-related peptides (MRPs), temporins and bradykinin-related peptides (BRPs)) is quite similar to that of R. temporaria. Since the genome of this frog remains unknown, the obtained results were compared with the recently published transcriptome of R. dalmatina.


Assuntos
Ranidae , Espectrometria de Massas em Tandem , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Anuros , Análise de Sequência de Proteína/métodos , Pele/química
7.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870288

RESUMO

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

9.
Nat Commun ; 14(1): 6243, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813859

RESUMO

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Incretinas/efeitos adversos , Transdução de Sinais
10.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836614

RESUMO

We investigated the immediate molecular consequences of traumatic brain injuries (TBIs) using a novel proteomics approach. We simulated TBIs using an innovative laboratory apparatus that employed a 5.1 kg dummy head that held neuronal cells and generated a ≤4000 g-force acceleration upon impact. A Proteome Integral Solubility Alteration (PISA) assay was then employed to monitor protein solubility changes in a system-wide manner. Dynamic impacts led to both a reduction in neuron viability and massive solubility changes in the proteome. The affected proteins mapped not only to the expected pathways, such as those of cell adhesion, collagen, and laminin structures, as well as the response to stress, but also to other dense protein networks, such as immune response, complement, and coagulation cascades. The cellular effects were found to be mainly due to the shockwave rather than the g-force acceleration. Soft materials could reduce the impact's severity only until they were fully compressed. This study shows a way of developing a proteome-based meter for measuring irreversible shockwave-induced cell damage and provides a resource for identifying protein biomarkers of TBIs and potential drug targets for the development of products aimed at primary prevention and intervention.


Assuntos
Lesões Encefálicas Traumáticas , Proteoma , Humanos , Proteoma/metabolismo , Solubilidade , Neurônios/metabolismo , Proteômica
11.
J Am Soc Mass Spectrom ; 34(10): 2098-2106, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713396

RESUMO

Bacteria are orders of magnitude smaller than mammalian cells, and while single cell proteomics (SCP) currently detects and quantifies several thousands of proteins per mammalian cell, it is not clear whether conventional SCP methods will be suitable for bacteria. Here we report on the first successful attempt to detect proteins from individual Escherichia coli bacteria, with validation of our findings by comparison with two bacteria samples and bulk proteomics data. Data are available via ProteomeXchange with the identifier PXD043473.


Assuntos
Bactérias , Proteômica , Bactérias/metabolismo , Escherichia coli/metabolismo , Proteoma/metabolismo , Proteômica/métodos
12.
Nat Commun ; 14(1): 5949, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741824

RESUMO

Rheumatoid arthritis (RA) involves several classes of pathogenic autoantibodies, some of which react with type-II collagen (COL2) in articular cartilage. We previously described a subset of COL2 antibodies targeting the F4 epitope (ERGLKGHRGFT) that could be regulatory. Here, using phage display, we developed recombinant antibodies against this epitope and examined the underlying mechanism of action. One of these antibodies, R69-4, protected against cartilage antibody- and collagen-induced arthritis in mice, but not autoimmune disease models independent of arthritogenic autoantibodies. R69-4 was further shown to cross-react with a large range of proteins within the inflamed synovial fluid, such as the complement protein C1q. Complexed R69-4 inhibited neutrophil FCGR3 signaling, thereby impairing downstream IL-1ß secretion and neutrophil self-orchestrated recruitment. Likewise, human isotypes of R69-4 protected against arthritis with comparable efficiency. We conclude that R69-4 abrogates autoantibody-mediated arthritis mainly by hindering FCGR3 signaling, highlighting its potential clinical utility in acute RA.


Assuntos
Artrite Experimental , Humanos , Animais , Camundongos , Artrite Experimental/prevenção & controle , Neutrófilos , Colágeno , Autoanticorpos , Epitopos
13.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37695523

RESUMO

B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.


Assuntos
Artrite , Doenças Autoimunes , Humanos , Camundongos , Ratos , Animais , Linfócitos T Reguladores , Interleucina-10 , Autoantígenos
14.
Cell Mol Life Sci ; 80(9): 268, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632572

RESUMO

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.


Assuntos
Valva Aórtica , Tenascina , Humanos , Proteômica , Matriz Extracelular , Aorta
15.
J Periodontal Res ; 58(5): 1061-1081, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522282

RESUMO

BACKGROUND AND OBJECTIVE: There is no clear understanding of molecular events occurring in the periodontal microenvironment during clinical disease progression. Our aim was to explore qualitative and quantitative differences in gingival crevicular fluid (GCF) protein profiles from patients diagnosed with periodontitis between non-progressive and progressive periodontal sites. METHODS: Five systemically healthy patients diagnosed with periodontitis were monitored weekly in their progression of the disease and GCF samples from 10 candidate sites were obtained. Two groups of five sites, matched from an equal number of teeth, were selected from the five patients: Progression (PG) and Non-Progression (NP). Global protein identification was performed with high-throughput proteomic approaches and label-free analysis determined their relative abundances. Proteins were identified by Proteome Discoverer v2.4 and searched against human SwissProt protein databases. Enrichment bioinformatic analyses were performed in STRING-DB and ShinyGO environment. RESULTS: 1504 and 1500 proteins were identified in NP and PG respectively. Forty-eight proteins were exclusively identified in PG, while 52 were identified in NP. Moreover, 35 proteins were more abundant in PG and 29 proteins in NP (twofold change, p < .05). The NP group was mainly represented by proteins from "response to biotic stimuli and other organisms," "processes of cell death regulation," "peptidase regulation," "protein ubiquitination," and "ribosomal activity" GO categories. The most represented GO categories of the PG group were "assembly of multiprotein complexes," "catabolic processes," "lipid metabolism," and "binding to hemoglobin and haptoglobin." CONCLUSIONS: There are quantitative and qualitative differences in the proteome of GCF from periodontal sites according to the status of clinical progression of periodontitis. Progressive periodontitis sites are characterized by a protein profile associated with catabolic processes, immune response, and response to cellular stress, while stable periodontitis sites show a protein profile mainly related to wound repair and healing processes, cell death regulation, and chaperone-mediated autophagy. Understanding the etiopathogenic role of these profiles in progressive periodontitis may help to develop new diagnostic and therapeutic approaches.


Assuntos
Periodontite , Proteoma , Humanos , Líquido do Sulco Gengival/química , Proteômica , Periodontite/metabolismo , Progressão da Doença
16.
J Am Soc Mass Spectrom ; 34(9): 1979-1988, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37525119

RESUMO

Disulfide bonds formed by a pair of cysteine residues in the peptides' backbone represent a certain problem for their sequencing by means of mass spectrometry. As a rule, in proteomics, disulfide bonds should be cleaved before the analysis followed by some sort of chemical derivatization. That step is time-consuming and may lead to losses of minor peptides of the analyzed mixtures due to incomplete reaction, adsorption on the walls of the vials, etc. Certain problems in the de novo top-down sequencing of amphibian skin peptides are caused by the C-terminal disulfide loop, called the Rana box. Its reduction with or without subsequent derivatization was considered to be an unavoidable step before mass spectrometry. In the present study, EThcD demonstrated its efficiency in sequencing intact disulfide-containing peptides without any preliminary derivatization. Applied to the secretion of three frog species, EThcD provided the full sequence inside the intramolecular disulfide cycle for all S-S-containing peptides found in the samples, with the only exception being diarginine species. Proteolytic fragments, which are shorter than the original peptides, were helpful in some cases. HCD should be mentioned as a complementary tool to the EThcD tool, being useful as a confirmation method for some sequence details.


Assuntos
Dissulfetos , Peptídeos , Animais , Sequência de Aminoácidos , Dissulfetos/química , Peptídeos/química , Espectrometria de Massas/métodos , Ranidae
17.
Front Cell Infect Microbiol ; 13: 1085908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305414

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes a wide range of airway diseases. NTHi has a plethora of mechanisms to colonize while evading the host immune system for the establishment of infection. We previously showed that the outer membrane protein P5 contributes to bacterial serum resistance by the recruitment of complement regulators. Here, we report a novel role of P5 in maintaining bacterial outer membrane (OM) integrity and protein composition important for NTHi-host interactions. In silico analysis revealed a peptidoglycan-binding motif at the periplasmic C-terminal domain (CTD) of P5. In a peptidoglycan-binding assay, the CTD of P5 (P5CTD) formed a complex with peptidoglycan. Protein profiling analysis revealed that deletion of CTD or the entire P5 changed the membrane protein composition of the strains NTHi 3655Δp5CTD and NTHi 3655Δp5, respectively. Relative abundance of several membrane-associated virulence factors that are crucial for adherence to the airway mucosa, and serum resistance were altered. This was also supported by similar attenuated pathogenic phenotypes observed in both NTHi 3655Δp5 CTD and NTHi 3655Δp5. We found (i) a decreased adherence to airway epithelial cells and fibronectin, (ii) increased complement-mediated killing, and (iii) increased sensitivity to the ß-lactam antibiotics in both mutants compared to NTHi 3655 wild-type. These mutants were also more sensitive to lysis at hyperosmotic conditions and hypervesiculated compared to the parent wild-type bacteria. In conclusion, our results suggest that P5 is important for bacterial OM stability, which ultimately affects the membrane proteome and NTHi pathogenesis.


Assuntos
Bactérias , Peptidoglicano , Humanos , Membranas , Parede Celular , Haemophilus influenzae/genética
18.
Proc Natl Acad Sci U S A ; 120(25): e2218668120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307481

RESUMO

A longstanding goal has been to find an antigen-specific preventive therapy, i.e., a vaccine, for autoimmune diseases. It has been difficult to find safe ways to steer the targeting of natural regulatory antigen. Here, we show that the administration of exogenous mouse major histocompatibility complex class II protein bounding a unique galactosylated collagen type II (COL2) peptide (Aq-galCOL2) directly interacts with the antigen-specific TCR through a positively charged tag. This leads to expanding a VISTA-positive nonconventional regulatory T cells, resulting in a potent dominant suppressive effect and protection against arthritis in mice. The therapeutic effect is dominant and tissue specific as the suppression can be transferred with regulatory T cells, which downregulate various autoimmune arthritis models including antibody-induced arthritis. Thus, the tolerogenic approach described here may be a promising dominant antigen-specific therapy for rheumatoid arthritis, and in principle, for autoimmune diseases in general.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Animais , Camundongos , Vacinas de Subunidades , Linfócitos T Reguladores , Anticorpos
19.
Mol Cell Proteomics ; 22(7): 100589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37301377

RESUMO

Spontaneous deamidation of asparaginyl residues in proteins, if not repaired or cleared, can set in motion a cascade that leads to deteriorated health. Previously, we have discovered that deamidated human serum albumin (HSA) is elevated in the blood of patients with Alzheimer's disease and other neurodegenerative diseases, while the level of endogenous antibodies against deamidated HSA is significantly diminished, creating an imbalance between the risk factor and the defense against it. Endogenous antibodies against deamidated proteins are still unexplored. In the current study, we employed the SpotLight proteomics approach to identify novel amino acid sequences in antibodies specific to deamidated HSA. The results provide new insights into the clearance mechanism of deamidated proteins, a possible avenue for prevention of neurodegeneration.


Assuntos
Proteômica , Albumina Sérica Humana , Humanos , Proteômica/métodos , Proteínas , Sequência de Aminoácidos , Anticorpos
20.
Angew Chem Int Ed Engl ; 62(24): e202216610, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37009775

RESUMO

Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.


Assuntos
Di-Hidroxifenilalanina , Tirosina , Di-Hidroxifenilalanina/química , Tirosina/química , Colágeno/química , Oxirredução , Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...